The statistical heterogeneity of the non-independent and identically distributed (non-IID) data in local clients significantly limits the performance of federated learning. Previous attempts like FedProx, SCAFFOLD, MOON, FedNova and FedDyn resort to an optimization perspective, which requires an auxiliary term or re-weights local updates to calibrate the learning bias or the objective inconsistency. However, in addition to previous explorations for improvement in federated averaging, our analysis shows that another critical bottleneck is the poorer optima of client models in more heterogeneous conditions. We thus introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices. We provide theoretical analysis of the possible benefit from FedSkip and conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency. Source code is available at: https://github.com/MediaBrain-SJTU/FedSkip.
translated by 谷歌翻译
Federated learning enables cooperative training among massively distributed clients by sharing their learned local model parameters. However, with increasing model size, deploying federated learning requires a large communication bandwidth, which limits its deployment in wireless networks. To address this bottleneck, we introduce a residual-based federated learning framework (ResFed), where residuals rather than model parameters are transmitted in communication networks for training. In particular, we integrate two pairs of shared predictors for the model prediction in both server-to-client and client-to-server communication. By employing a common prediction rule, both locally and globally updated models are always fully recoverable in clients and the server. We highlight that the residuals only indicate the quasi-update of a model in a single inter-round, and hence contain more dense information and have a lower entropy than the model, comparing to model weights and gradients. Based on this property, we further conduct lossy compression of the residuals by sparsification and quantization and encode them for efficient communication. The experimental evaluation shows that our ResFed needs remarkably less communication costs and achieves better accuracy by leveraging less sensitive residuals, compared to standard federated learning. For instance, to train a 4.08 MB CNN model on CIFAR-10 with 10 clients under non-independent and identically distributed (Non-IID) setting, our approach achieves a compression ratio over 700X in each communication round with minimum impact on the accuracy. To reach an accuracy of 70%, it saves around 99% of the total communication volume from 587.61 Mb to 6.79 Mb in up-streaming and to 4.61 Mb in down-streaming on average for all clients.
translated by 谷歌翻译
To better handle long-tail cases in the sequence labeling (SL) task, in this work, we introduce graph neural networks sequence labeling (GNN-SL), which augments the vanilla SL model output with similar tagging examples retrieved from the whole training set. Since not all the retrieved tagging examples benefit the model prediction, we construct a heterogeneous graph, and leverage graph neural networks (GNNs) to transfer information between the retrieved tagging examples and the input word sequence. The augmented node which aggregates information from neighbors is used to do prediction. This strategy enables the model to directly acquire similar tagging examples and improves the general quality of predictions. We conduct a variety of experiments on three typical sequence labeling tasks: Named Entity Recognition (NER), Part of Speech Tagging (POS), and Chinese Word Segmentation (CWS) to show the significant performance of our GNN-SL. Notably, GNN-SL achieves SOTA results of 96.9 (+0.2) on PKU, 98.3 (+0.4) on CITYU, 98.5 (+0.2) on MSR, and 96.9 (+0.2) on AS for the CWS task, and results comparable to SOTA performances on NER datasets, and POS datasets.
translated by 谷歌翻译
整合多个在线社交网络(OSN)对许多下游社交挖掘任务(例如用户偏好建模,建议和链接预测)具有重要意义。但是,不幸的是,伴随着越来越多的隐私问题,泄漏敏感用户信息。如何完全利用来自不同在线社交网络的数据,同时保存用户隐私仍然无法解决。为此,我们提出了一个跨网络的社交用户嵌入框架,即DP-Crosue,以一种隐私性的方式学习用户的全面表示。我们共同考虑具有不同隐私保证的部分调整社交网络的信息。特别是,对于每个异质社交网络,我们首先引入一个混合差异隐私概念,以捕获异构数据类型的隐私期望的变化。接下来,为了找到跨社交网络的用户链接,我们进行了无监督的基于用户嵌入的对齐方式,其中通过异质网络嵌入技术实现了用户嵌入。为了进一步增强用户嵌入,一种新颖的跨网络GCN嵌入模型旨在通过那些对齐用户跨网络传输知识。在三个现实世界数据集上进行的广泛实验表明,我们的方法对用户兴趣预测任务以及捍卫用户属性推理攻击的嵌入进行了重大改进。
translated by 谷歌翻译
域的适应性旨在使标记的源域和未标记的目标域对齐,并且大多数现有方法都认为源数据是可访问的。不幸的是,这种范式引起了数据隐私和安全性的关注。最近的研究试图通过无源设置来消除这些问题,该设置将源训练的模型适应目标域而不暴露源数据。但是,由于对源模型的对抗性攻击,无源范式仍然有数据泄漏的风险。因此,提出了黑框设置,其中只能利用源模型的输出。在本文中,我们同时介绍了无源的适应和黑盒适应性,提出了一种新的方法,即来自频率混合和相互学习(FMML)的“更好的目标表示”。具体而言,我们引入了一种新的数据增强技术作为频率混音,该技术突出了插值中与任务相关的对象,从而增强了目标模型的类符合性和线性行为。此外,我们引入了一种称为相互学习的网络正则化方法,以介绍域的适应问题。它通过自我知识蒸馏传输目标模型内部的知识,从而通过学习多尺度目标表示来减轻对源域的过度拟合。广泛的实验表明,我们的方法在两种设置下都可以在几个基准数据集上实现最新性能。
translated by 谷歌翻译
联合学习(FL)框架使Edge客户能够协作学习共享的推理模型,同时保留对客户的培训数据的隐私。最近,已经采取了许多启发式方法来概括集中化的自适应优化方法,例如SGDM,Adam,Adagrad等,以提高收敛性和准确性的联合设置。但是,关于在联合设置中的位置以及如何设计和利用自适应优化方法的理论原理仍然很少。这项工作旨在从普通微分方程(ODE)的动力学的角度开发新的自适应优化方法,以开发FL的新型自适应优化方法。首先,建立了一个分析框架,以在联合优化方法和相应集中优化器的ODES分解之间建立连接。其次,基于这个分析框架,开发了一种动量解耦自适应优化方法FedDA,以充分利用每种本地迭代的全球动量并加速训练收敛。最后但并非最不重要的一点是,在训练过程结束时,全部批处理梯度用于模仿集中式优化,以确保收敛并克服由自适应优化方法引起的可能的不一致。
translated by 谷歌翻译
垂直联合学习(VFL)是一种隐私的机器学习范式,可以从以隐私性的方式从不同平台上分布的功能学习模型。由于在实际应用程序中,数据可能包含对公平敏感特征(例如性别)的偏见,因此VFL模型可能会从培训数据中继承偏见,并对某些用户组变得不公平。但是,现有的公平ML方法通常依赖于对公平敏感特征的集中存储来实现模型公平,通常在联合场景中不适用。在本文中,我们提出了一个公平的垂直联合学习框架(FAIRVFL),可以改善VFL模型的公平性。 FAIRVFL的核心思想是根据分散的特征字段以隐私的方式学习样本的统一和公平表示。具体而言,每个具有不敏感功能的平台首先从本地功能中学习本地数据表示。然后,将这些本地表示形式上传到服务器,并将其汇总到目标任务的统一表示形式中。为了学习公平的统一表示形式,我们将它们发送到每个平台存储公平性敏感的功能,并应用对抗性学习,以从偏见的数据继承的统一表示形式中消除偏见。此外,为了保护用户隐私,我们进一步提出了一种对抗性对手学习方法,以从服务器中的统一表示形式中删除隐私信息,然后再将其发送到保持对公平敏感功能的平台。在两个现实世界数据集上进行的实验验证了我们的方法可以通过用户隐私受到良好保护有效地改善模型公平性。
translated by 谷歌翻译
图形神经网络(GNN)已被广泛用于建模图形结构化数据,这是由于其在广泛的实用应用中令人印象深刻的性能。最近,GNNS的知识蒸馏(KD)在图形模型压缩和知识转移方面取得了显着进步。但是,大多数现有的KD方法都需要大量的真实数据,这些数据在实践中不容易获得,并且可能排除其在教师模型对稀有或难以获取数据集培训的情况下的适用性。为了解决这个问题,我们提出了第一个用于图形结构化数据(DFAD-GNN)的无数据对抗知识蒸馏的端到端框架。具体而言,我们的DFAD-GNN采用生成性对抗网络,主要由三个组成部分组成:预先训练的教师模型和学生模型被视为两个歧视者,并利用生成器来衍生训练图来从教师模型进入学生模型。在各种基准模型和六个代表性数据集上进行的广泛实验表明,我们的DFAD-GNN在图形分类任务中显着超过了最新的无数据基线。
translated by 谷歌翻译
联合学习(FL)是以隐私性的方式从分散数据培训全球模型的重要范例。现有的FL方法通常假定可以对任何参与客户端进行培训。但是,在实际应用中,客户的设备通常是异质的,并且具有不同的计算能力。尽管像伯特这样的大型模型在AI中取得了巨大的成功,但很难将它们应用于弱客户的异质FL。直接的解决方案(例如删除弱客户端或使用小型模型适合所有客户端)将带来一些问题,例如由于数据丢失或有限的模型表示能力而导致的掉落客户端的代表性不足和劣等精度。在这项工作中,我们提出了一种包含客户的联合学习方法,以解决此问题。包容性FL的核心思想是将不同尺寸的模型分配给具有不同计算功能的客户,为功能强大的客户提供的较大模型以及针对弱客户的较小客户。我们还提出了一种有效的方法,可以在多个具有不同大小的本地模型之间共享知识。这样,所有客户都可以参与FL中的模型学习,最终模型可以足够大。此外,我们提出了一种动量知识蒸馏方法,以更好地转移强大客户的大型模型中的知识,向弱客户的小型模型。在许多实际基准数据集上进行的广泛实验证明了该方法在FL框架下使用异质设备的客户学习准确模型的有效性。
translated by 谷歌翻译
一滴联合学习(FL)最近被出现为有希望的方法,允许中央服务器在单个通信中学习模型。尽管通信成本低,但现有的一次性的单次方法大多是不切实际或面临的固有限制,例如,需要公共数据集,客户的型号是同质的,需要上传其他数据/型号信息。为了克服这些问题,我们提出了一种更实用的无数据方法,名为FEDSYN的一枪框架,具有异质性。我们的Fedsyn通过数据生成阶段和模型蒸馏阶段列出全球模型。据我们所知,FEDSYN是由于以下优点,FEDSYN可以实际应用于各种实际应用程序的方法:(1)FEDSYN不需要在客户端之间传输的其他信息(模型参数除外)服务器; (2)FEDSYN不需要任何用于培训的辅助数据集; (3)FEDSYN是第一个考虑FL中的模型和统计异质性,即客户的数据是非IID,不同的客户端可能具有不同的模型架构。关于各种现实世界数据集的实验表明了我们的Fedsyn的优越性。例如,当数据是非IID时,FEDSYN在CIFAR10数据集中优于CEFAR10数据集的最佳基线方法FED-ADI的最佳基准方法。
translated by 谷歌翻译